TR-19/2000 Thermoplastics Piping for the Transport of Chemicals

THERMOPLASTIC PIPING FOR THE TRANSPORT OF CHEMICALS

Foreword

This report was developed and published with the technical help and financial support of the members of the PPI (Plastics Pipe Institute, Inc.). The members have shown their interest in quality products by assisting independent standards-making and user organizations in the development of standards, and also by developing reports on an industry-wide basis to help engineers, code officials, specifying groups, and users.

The purpose of this technical report is to provide information on the transport of various chemicals using thermoplastic piping materials.

This report has been prepared by PPI as a service of the industry. The information in this report is offered in good faith and believed to be accurate at the time of its preparation, but is offered without any warranty, expressed or implied, including WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Consult the manufacturer for more detailed information about the particular weathering package used for its piping products. Any reference to or testing of a particular proprietary product should not be construed as an endorsement by PPI, which do not endorse the proprietary products or processes of any manufacturer. The information in this report is offered for consideration by industry members in fulfilling their own compliance responsibilities. PPI assumes no responsibility for compliance with applicable laws and regulations.

PPI intends to revise this report from time to time, in response to comments and suggestions from users of the report. Please send suggestions of improvements to the address below. Information on other publications can be obtained by contacting PPI directly or visiting the web site.

The Plastics Pipe Institute Toll Free: (888) 314-6774 http://www.plasticpipe.org

January 2000

CHEMICAL RESISTANCE IN GENERAL

Thermoplastic materials generally are resistant to attack from many chemicals which makes them suitable for use in many process applications. The suitability for use in a particular process piping application is a function of:

I. <u>Material</u>

A. The specific plastic material: ABS, CPVC, PP, PVC, PE, PB, PVDF, PEX¹, PA11, PK

B. The specific plastic material and its physical properties as identified by its cell classification according to the appropriate ASTM material specification.

II. Product and Joint System

A. Piping product dimensions, construction, and composition (layers, fillers, etc.).

B. Joining system. Heat fusion and solvent cementing do not introduce different materials into the system. Mechanical joints can introduce gaskets such as elastomers, or other thermoplastic or non-thermoplastic materials used as mechanical fitting components.

C. Other components and appurtenances in the piping system.

III. Use Conditions - Internal and External

A. Chemical or mixtures of chemicals, and their concentrations.

B. Operating temperature — maximum, minimum, and cyclical variations.

C. Operating pressure or applied stress — maximum, minimum and cyclical variations.

D. Life-cycle information — such as material cost, installation cost, desired service life, maintenance, repair and replacement costs, etc.

While the effect of each individual chemical is specific, some chemicals can be grouped into categories based on similar reactions. For example, water solutions of neutral inorganic salts generally have the same effect on thermoplastic piping materials as water alone, thus, sodium chloride, potassium alum, calcium chloride, copper sulfate, potassium sulfate and zinc chloride solutions have the same effect as water. However, at elevated temperatures and/or high concentrations, some oxidizing salt solutions may attack some specific plastic materials.

Further, with organic chemicals in a specific series such as alcohols, ketones, or acids, etc., as the molecular weight of the organic chemical series increases, the chemical resistance of a particular plastic material to members of the specific organic chemical series frequently also increases. Thus, while one type of

¹ Once cross-linked, PEX is no longer considered a thermoplastic material; however, it is included in this report as convenience for the reader.

polyvinyl chloride at 73 °F is not suitable for use with ethyl acetate, it is suitable for the higher molecular weight butyl acetate.

Generally, the resistance of a particular plastic to a specific chemical decreases with an increase in concentration. For example, at 73 °F polyethylene pipe can be used to carry 70% sulfuric acid but is not satisfactory for 95% sulfuric acid. In some cases, combinations of chemicals may have a synergistic effect on a thermoplastic material where individual chemicals do not. Lastly, the resistance of a particular plastic to a specific chemical generally decreases with temperature increase, with stress increase, and decreases with cyclical variations of temperature or applied stress.

TYPES OF CHEMICAL ATTACK ON PLASTICS

In general, chemicals that affect plastics do so in one of two ways. One effect is chemical solubility or permeation. The other is direct chemical attack.

In the case of solubility or permeation, physical properties may be affected, but the polymer molecule structure itself is not chemically changed, degraded or destroyed. In solubility or permeation, gas, vapor, or liquid molecules pass through the polymer, typically without damaging the plastic material itself. If the solvating chemical can be removed completely, the plastic is generally restored to its original condition. However, it is not always possible to remove a solvating chemical from the plastic, and in such cases, effects relating to chemical solvation may be permanent.

Sometimes the polymer itself may not be soluble, but it may contain a compounding ingredient that may be soluble in the chemical, and may be extracted from the polymer compound. This is rare because such extractable ingredients are either not used in pipe compounds, or they are chemically bonded to the molecular polymer matrix, and in such small amounts that they cannot be leached out to any significant extent.

Permeation may do little if any harm to the material, but it may have applicationrelated effects. The permeating chemical may transfer into a fluid on the other side of the pipe. In general, thermoplastic pipes should not be used where a permeating chemical could compromise the purity of a fluid such as potable water inside the pipe, and in gas or vapor transmission service, there may be a very slight loss of contents through the pipe wall. Lastly, a permeating chemical may be entrained in the material and be released when heat fusion or solvent cement joining is performed. Heat fusion or solvent cement joining may be unreliable if performed on permeated pipes.

Direct chemical attack occurs when exposure to a chemical causes a chemical alteration of the polymer molecules by chain scission, crosslinking, oxidation, or substitution reactions. Direct chemical attack may cause profound, irreversible changes that cannot be restored by removal of the chemical. Examples of this

type of attack are 50% chromic acid at 140 °F on PVC, aqua regia on PVC at 73 °F, 95% sulfuric acid at 73 °F on PE and wet chlorine gas on PVC and PE. Direct chemical attack frequently causes a severe reduction of mechanical physical properties such as tensile strength, ductility, and impact resistance, and susceptibility to cracking from applied stress (stress cracking).

However, direct chemical attack is not always detrimental. For example, PEX materials are deliberately crosslinked using chemical or irradiation methods. While crosslinking enhances certain mechanical properties of PEX materials, it may preclude the use of heat fusion to join PEX piping.

The chemical resistance of the various plastic types varies greatly from one plastic material to another (i.e., PVC, ABS, PE, etc.), and also among different cell classifications of the same plastic type (e.g. PVC 1120 to PVC 2110, PE 1404 to PE 3408, etc.). There may also be slight variations among commercial products having the same cell classification.

The chemical resistance of plastic piping is basically a function of the chemical resistance of the thermoplastic material, and processing of the plastic in such a way that its full chemical resistance is developed. In general, the less compounding ingredients used the better the chemical resistance. Most plastic pipe compounds covered by current ASTM specifications and product standards use a minimum of compounding ingredients, except for the Type II PVC's and CAB plastics. The Type II PVC's contain impact modifiers which are less susceptible to chemical attack than monomeric plasticizers such as those used in PVC cable insulation, film and sheeting compounds, and in CAB plastics. Thermoplastic pipes with significant filler percentages may be susceptible to chemical attack where an unfilled material may be affected to a lesser degree or not at all.

Some newer piping products utilize a multi-layered (composite) construction, that is, the pipe wall is constructed of layers of different materials. Both thermoplastic and non-thermoplastic materials are used for the layers. Examples are PE/AL/PE, and PEX/AL/PEX pipes where there is a mid-wall aluminum layer. An all thermoplastic composite pipe has PVC, ABS, and PVC layers. Layered composite material pipes may have chemical resistance that differs from the chemical resistance of the individual materials.

Chemicals that attack plastics do so at a certain rate, some slowly and some more quickly. But usually, any chemical attack is increased when temperature or stress are increased, or when temperature or stress are varied. The particular rate must be taken into consideration in the life-cycle evaluation for a particular application. It has been observed in some chemical plants that while a particular application may have a relatively short service life, the overall life-cycle cost may be economically feasible and justifiable. Each combination of material cost, installation cost and service life must be evaluated and judged on its own merits.

CHEMICAL RESISTANCE DATA FOR THERMOPLASTIC PIPING IN NON-PRESSURE (GRAVITY-FLOW) APPLICATIONS and DATA TABLE

When thermoplastic pipes come into contact with chemical agents, it is important to know how the pipe may be affected. For gravity flow or non-pressure applications, where the pipe Is not subject to continuous internal pressure or thermal stress, chemical immersion test data may provide suitable information. The pipe manufacturer may have additional information on similar testing, or information on previous installations under similar field conditions.

I. A thermoplastic pipe that is subjected to several chemicals may or may not be affected by the chemical combination. Chemicals that individually do not have an effect may affect the pipe if combined with certain other chemicals. The listings that follow do not address chemical combinations.

II. Layered composite piping may have chemical resistance that differs from that of the individual materials in the layers. The listings that follow are not applicable to layered composite piping products.

III. The listings that follow are not applicable to composite piping products such as reinforced epoxy resin (fiberglass) pipes, or to thermoplastic pipes containing significant percentages of filler materials.

IV. The following chemical resistance information has been obtained from numerous sources. It is based primarily on plastic material test specimens that have been immersed in the chemical, and to a lesser degree, on fieldexperience. In most cases, detailed information on the test conditions (such as exposure time), and on test results (such as change in weight, change in volume, and change in strength) were not available. Therefore, this information is best used only for comparison of different thermoplastic materials.

V. Where no concentrations are given, the relatively pure material is indicated, except in the case of solids where saturated aqueous solutions are indicated.

NOTE: Even though indicated as acceptable with certain temperature limitations, the use of PVC piping with liquid hydrocarbons such as gasoline and jet fuels, should be limited to short-term exposure such as secondary containment systems. This piping is not recommended for long-term exposure to liquid hydrocarbons.

Resistance Codes

The following code is used in the data table:

Code	Meaning	Typical Result
140	Plastic type is generally resistant to temperature (°F) indicated by code.	Swelling < 3% or weight loss < 0.5% and elongation at break not significantly changed.
R to 73	Plastic type is generally resistant to temperature (°F) indicated by code and may have limited resistance at higher temperatures.	Swelling < 3% or weight loss < 0.5% and elongation at break not significantly changed.
C to 73	Plastic type has limited resistance to temperature (°F) indicated by code and may be suitable for some conditions.	Swelling 3-8% or weight loss 0.5-5% and/or elongation at break decreased by < 50%.
N	Plastic type is not resistant.	Swelling > 8% or weight loss > 5% and/or elongation at break decreased by > 50%.
—	Data not available.	

Plastic Materials Identification

ABS	acrilonitrile-butadiene-styrene
CPVC	chlorinated polyvinyl chloride
PP	polypropylene
PVC	polyvinyl chloride
PE	polyethylene
PB	polybutylene
PVDF	poly vinylidene fluoride
PEX	crosslinked polyethylene
PA11	polyamide 11
PK	polyketone

CHEMICALS THAT DO NOT NORMALLY AFFECT THE PROPERTIES OF AN UNSTRESSED THERMOPLASTIC MAY CAUSE COMPLETELY DIFFERENT BEHAVIOR (SUCH AS STRESS CRACKING) WHEN UNDER THERMAL OR MECHANICAL STRESS (SUCH AS CONSTANT INTERNAL PRESSURE OR FREQUENT THERMAL OR MECHANICAL STRESS CYCLES). UNSTRESSED IMMERSION TEST CHEMICAL RESISTANCE INFORMATION IS APPLICABLE ONLY WHEN THE THERMOPLASTIC PIPE WILL NOT BE SUBJECT TO MECHANICAL OR THERMAL STRESS THAT IS CONSTANT OR CYCLES FREQUENTLY.

WHEN THE PIPE WILL BE SUBJECT TO A CONTINUOUS APPLIED MECHANICAL OR THERMAL STRESS OR TO COMBINATIONS OF CHEMICALS, TESTING THAT DUPLICATES THE EXPECTED FIELD CONDITIONS AS CLOSELY AS POSSIBLE SHOULD BE PERFORMED ON REPRESENTATIVE SAMPLES OF THE PIPE PRODUCT TO PROPERLY EVALUATE PLASTIC PIPE FOR USE IN THIS APPLICATION.

	Plastics at Maximum Operating Temperature (F)											
Chemicals and												
Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК	
Acetaldehyde			N	140	N	C to	C to		C to	C to	R to	
CH ₃ CHO						73	73		140	176	73	
	Aq. Of 40%		N		C to 73	R to 73		Ν	R to 73			
Acetamide CH ₃ CONH2	5%	120		140		140			140			
Acetic Acid CH₃ COOH	vapor	120	180	180	140	140	140		140			
	5%										R to 176	
	10%							R to 248	140	R to 176		
	25%	Ν	180	180	140	140	140		140			
	40%							R to 140	R to 176			
	50%							R to 140	R to 176	C to 68		
	60%	Ν	Ν	180	73	73	73	R to 104	73			
	80%							R to 104				
	85%	Ν	Ν	120	73	73	73		73			
	glacial	Ν	N	120	73	73	73	R to 104	R to 68			
Acetic Anhydride (CH ₃ CO) ₂ O		Ν	Ν	73	Ν	73	140	Ν	73	C to 68		
Acetone	5%	Ν	Ν	73	Ν	C to	140	R to	C to	C to		

riastics at Maximum Operating reinperature (1)											
Chemicals and											
Formula	Concentration	ABS	CPVC	РР	PVC	PE	РВ	PVDF	PEX	PA 11	РК
$CH_3 COCH_3$						73		212	73	140	
	10%							R to 122			
	100%										R to 73 C to 122
Acetophenone		Ν		120		73		R to	73		
$C_6 H_5 COCH_3$									68		
Acetyl Chloride CH ₃ COCl		Ν	Ν		Ν			Ν			
Acetylene	gas	73	Ν	73	Ν	73	C to		73	140	
HC=CH	100%						73				
AcetyInitrile			Ν		Ν						
Acrylic Acid	97%		Ν		N	140			140		
H ₂ C:CHCOOH											
Acrylonitrile			Ν		Ν	140			140		
H ₂ C:CHCN											
Adipic Acid	sat'd		180	140	140	140	73	R to	140		
COOH(CH ₂) ₄ COC	ЭН							176			
Allyl Alcohol	96%		C to	140	R to	140	140		Ν		
$CH_2 = CHCH_2 OH$			73		73						
			Ν		Ν	C to		140	C to		
CI ℃I					73				73		
	Liquid							R to 68			
Aluminum Ammonium	sat'd		180	140	140	140			140		
AIIIIIUIIIUIII											

Plastics at Maximum Operating Temperature (F)

Ammonium

	Plastics at Maximum Operating Temperature (F)												
Chemicals and Formula C	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК		
Sulfate (Alum)													
AINH4 (SO4)2 12H 20	O												
Aluminum Chloride Aqueous AlCl ₂	sat'd	160	180	180	140	140	140	R to 212	140				
Aluminum Fluoride Anhydrous AIF ₃	sat'd	160	180	180	73	140	140	R to 212	140				
Aluminum Hydroxide AIO3 O3H2 O	e sat'd	160	180	180	140	140	140	R to 212	140		N		
Aluminum Nitrate Al(NO ₃) ₃ O9H ₂ O	sat'd		180	180	140	140	140	R to 212	140				
Aluminum Oxychlori	de		180	180	140		140						
Aluminum Potassiun Sulfate (Alum) AlK(SO ₄) ₂ o12H ₂ O	n sat'd	160	180	140	140	140		R to 212	140				
Aluminum Sulfate (Alum)	sat'd	160	180	140	140	140	C to 73	R to 212	140	194			
Al ₂ (SO ₄) ₃	20%										R to 73		
Amonia Gas NH₃	100%	N	N	140	140	140	140		140	140			
Amonia Liquid NH ₃	100%	160	Ν	140	Ν	140	73		140	140			
Amonia Acetate NH4(C ₂ H ₃ O ₂)	sat'd	120	180	73	140	140		R to 212	140				

		Pla	astics at I	Maximun	n Operati	ing Temp	oerature (<u>F)</u>			
Chemicals and Formula C	oncentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК
Amonium Bifluoride NH4 HF2	sat'd		180	180	140		140		140		
Amonium Bisulfide (NH₄)HS					140						
Amonium Carbonate (NH4)HCO30 (NH4) C			180	212	140	140	140	R to 248	140		
Amonium Chloride NH₄Cl	sat'd	120	180	212	140	140	140	R to 212	140		
Amonium Dichromat (NH4)2Cr 2O7	e		73		73						
Amonium Fluoride NH4 F	10%	120	180	212	140	140		R to 212	140		
	25%	120	180	212	C to 140	140	73		140		
Amonium Hydroxide NH₄ OH	10%	120	Ν	212	140	140	140		140		Ν
	30%					R to 140			R to 140		
	Conc.								194		
Amonium sphate	Sat'd		 212	R to 140	R to 140	R to 140	R to 248	R to	R to 140		
Amonium Nitrate NH ₄ NO ₃	sat'd	120	180	212	140	140	140	R to 212	140		
Amonium Persulphat (NH_4) ₂ S ₂ O ₈	te			180	140	140	140	140	R to 212	140	

Plastics at Maximum Operating Temperature (F)											
Chemicals and											
	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК
Amonium Phosphate	e all	120	180	212	140	140	140	R to	140		
(Monobasic)								248			
NH ₄ H ₂ PO ₄											
Amonium Sulfate	Sat'd.	120	180	212	140	140	140	R to	140		
(NH ₄) ₂ SO ₄								212			
	20%										R to 73
Amonium Sulfide	dilute	120	180	212	140	140	140		140		
(NH ₄) ₂ S	Sat'd.					140					
A	-t- E0 000/	400	400	040	4.40	4.40	4.40	D to	70		
Amonium Thiocyana	ate 50-60%	120	180	212	140	140	140	R to 212	73		
Amyl Acetate			Ν	Ν	Ν	Ν	73		R to	73	C to
$CH_3 COOC_5 H_{11}$								122		194	
						4.40	4.40		D.(
Amyl Alcohol C₅ H ₁₁ OH			Ν		Ν	140	140	R to 212	R to 140		
	100%						C to				
							140				
n-Amyl Chloride		N	N	N	N	C to			C to		
CH ₃ (CH ₂) ₃ CH ₂ CL		IN I	IN I		IN	73			73		
Anisole											C to 73
Aniline		N	N		N	73	C to	R to	C to		N
l ₂			, ,			10	140	68	0.0	140	
Aniline Chlorohydrat	e		Ν		Ν	C to	Ν		C to		
						73			73		

Plastics at Maximum Operating Temperature (F)												
Chemicals and												
	oncentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	РК	
Aniline Hydrochloride	e sat'd		Ν		Ν	140	Ν		140			
C_6 H ₅ NH ₂ oHCl												
Anthraquinone			180		140	C to	C to		C to			
C ₆ H ₅ (CO) ₂ C ₆ H ₅					-	73	73		73			
Anthraquinone			180	73	140	140	C to		C to			
Sulfonic Acid							73		73			
C ₁₄ H ₇ O ₂ oSO ₃ Ho ₃	п <u>2</u> О											
Antifreeze											R to 73	
											C to 176	
Antimony Trichloride	sat'd		180	140	140	140	140	R to	140			
SbCl ₃								140				
Aqua Regia		N	R to	N	C to	N	N	C to	N			
(Nitrohydrochloric Ac	cid)			73		73			194			
Arsenic Acid	80%		180	140	140	140	140	R to	140			
H ₃ AsO ₄ 01/2H ₂ O								248				
Aryl Sulfonic Acid			180		140	73			73			
$C_6 H_5 SO_3 H$												
Asphalt			Ν	73	Ν	73	140		73			
Barium Carbonate	sat'd	120	180	140	140	140	140	R to	140			
BaCO ₃								248				
Barium Chloride	sat'd	120	180	140	140	140	140	R to	140	194		
BaCl ₂ o2H ₂ O	Salu	120	100	140	140	140	140	212	140	194		
Barium Hydroxide	sat'd	73	180	140	140	140	140		R to			
Ba(OH) ₂									212		_	
	10%										R to 73	

Plastics at Maximum Operating Temperature (F)												
Chemicals and												
	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	РК	
	30%					R to 140			R to 140			
Barium Nitrate Ba(NO ₃) ₂	sat'd	73	180	140	73	140			140			
Barium Sulfate BaSO₄	sat'd	73	180	140	140	140	140	R to 212	140			
Barium Sulfide BaS	sat'd	73	180	140	140	140	140		R to 248			
Beer		120	180	180	140	R to 140	140	R to 248	R to 140	68	R to 73	
Beet Sugar Liquors			180	180	140	73	140		73			
Benzaldehyde C ₆ H ₅ CHO	10% 99%	Ν	R to 73	73	R to 73	73	C to 73		73	R to 104	 C to 73	
Benzene C ₆ H ₆		 N	N	 N	N	 C to 120	N	 C to 122	 R to 68			
Benzene Sulfonic Acid	10%		180	180	140	R to 73			R to 73			
$C_6 H_5 SO_3 H$	10%+		Ν		Ν							
Benzoic Acid C ₆ H ₅ COOH	all	160	180	73	140	140	140		R to 248			
Benzoyl Chloride	Sat. Sol.							C to 68				
Benzyl Alcohol C ₆ H ₅ CH ₂ OH			Ν	120	Ν	140		R to 122	140	R to 68		

	Plastics at Maximum Operating Temperature (F)										
Chemicals											
and Formula C	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК
Benzyl Chloride									R to 140		
Bismuth Carbonate (BiO) ₂ CO	Sat'd.		180	180	140	140	140		140		
Black Liquor	sat'd		180	140	140	120	140		120		
Bleach	5% Active Cl ₂		180	120	140	C to 140			C to 140		R to 73
	12% Active Cl ₂	73	185	120	140	73	140		73		
Borax Na ₃ B₄ O⁊ o10H₂O	sat'd	160	180	212	140	140	140		140		
Boric Acid H $_3$ BO $_3$	Sat'd	160	180	212	140	140	140	R to 212	140		
Brake Fluid				140		140			140		
Brine	sat'd		180	140	140	140	140		140		
Bromic Acid HbrO ₃	Sat'd		180	Ν	140	Ν	140	R to 212	Ν		
	10%					140					
Bromine Br ₂	Liquid	73	Ν	Ν	Ν	Ν	Ν	R to 248	Ν	Ν	
	vapor 25%		180	Ν	140	Ν			Ν		
Bromine Water	cold		180	Ν	140	Ν	C to	R to	Ν		

Plastics at Maximum	Operating	Temperature (<u>(F)</u>
		*	

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК
	sat'd						73	176			
Bromobenzene C ₆ H ₅ Br					Ν						
Bromotoluene C ₆ H ₅ CH ₂ B ₂				С	Ν						
Butadiene	50%		180	N	140	73			73		
H ₂ C: CHHC: CH ₂	Gas							R to 212			
Butane	50%		180	140	140	140	N		140		
C ₄ H ₁₀	Gas							R to 68			
n-Butanol	Liquid							R to 140			R to 73
Butyl Acetate	100%	Ν	N	C to	N	C to	C to	C to	C to	R to	
CH₃ COOCH (CH	3) (C ₂ H ₅)			73		73	73	104	73	194	
Butyl Alcohol CH ₃ (CH ₂) ₂ CH ₂ (ЭН		C to 73	180	140	140	140		140	C to 104	
Butyl Cellosolve HOCH ₂ CH ₂ OC ₄	 H9		Ν		73						
n-Butyl Chloride C4 H9 Cl		Ν	Ν								
Butyl Glycol	Liquid							R to 212			
Butylene © CH ₃ CH:CHCH ₃	Liquid			Ν	140	120			120		

Chemicals											
and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК
1 official	Concentration	n bb	erve		1.0	12	10	1,01	T EA		111
Butyl Phenol				Ν	C to	73	73		R to		
$C_4 H_9 C_6 H_9 OH$					73				176		
Butyl Phthalate			Ν	180				R to			
								140			
Butyl Stearate					73						
Butynediol					73						
HOCH ₂ C:CCH ₂ OH	ł										
Butyric Acid		Ν	Ν	180	73	73	73		73		
CH ₃ CH ₂ CH ₂ COOI	H 20%							R to			
								212			
	Liquid							R to	73		
								176			
Cadmium Cyanide			180		140						
Cd(CN) ₂											
Calcium Bisulfide			73		Ν	140			140		
Ca(HS) ₂ o6H ₂ O											
Calcium Bisulfite			180	180	140	Ν	140		Ν		
Ca(HSO ₃) ₂	Sat'd							R to			
								248			
Calcium Carbonate	Sat'd		180	180	140	140	140	R to	140		
CaCO ₃								248			
Calcium Chlorate			180	180	140	140	140	R to	140		
Ca(ClO ₃) ₂ o2H ₂ O								248			
Calcium Chloride	5%										R to 176
CaCl ₂											
	Sat'd	120	180	180	140	140	140	R to	R to	R to	
								248	176	194	

Plastics at Maximum Operating Temperature (F)

Plastics at Maximum Operating Temperature (F)												
Chemicals												
and Formula C	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	РК	
Calcium Hydroxide Ca(OH) ₂		160	180	180	140	140	140		140			
	2%										R to 73	
	30%					R to 140			R to 140			
Calcium Hypochlorit	e 30%	160	180	140	140	140	140		140			
Ca(OCI) ₂	Sat'd							C to 212				
Calcium Nitrate			180	180	140	140	140		140			
Ca(NO ₃) ₂	50%					140		R to 212	140			
	Sat'd							R to 176				
Calciuim Oxide CaO			180		140	140			140			
Calcium Sulfate CaSO₄		100	180	180	140	140	140	R to 212	140			
Calcium Hydrogen Sulphide	>10%							R to 248				
Camphor C ₁₀ H ₁₆ O		Ν		73	73	73			73			
Cane Sugar Liquors C ₁₂ H ₂₂ O ₁₁			180	180	140	140	150		140			
Carbitol			Ν		73							
Carbon Dioxide	Dry	160	180	140	140	140		R to	140			

Plastics at Maximum Operating Temperature (F)													
Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	РК		
CO ₂	100%							212					
Carbon Dioxide CO ₂	Wet	160	180	140	140	140	140		140				
Carbon Disulfide CS ₂		Ν	Ν	Ν	Ν	C to 140			R to 68	R to 104			
Carbon Monoxide CO	Gas		180	180	140	140	140	R to 140	140				
Carbon Tetrachloric CCL4	le	Ν	Ν	Ν	73	C to 73	N	C to 212	C to 68	Ν	R to 73		
Carbonic Acid H ₂ CO ₃	Sat'd	185	180	140	140	140			140				
Castor Oil			C to 180	140	140	73	140		73				
Caustic Potash KOH	50%	160	180	180	140	140	73		140				
Caustic Soda NaOH (Sodium Hydroxide)	40%	160	180	180	140	140	73		140				
Cellosolve CICH ₂ COOH			Ν	73	73	C to 120	140		C to 120				
Cellosolve Acetate CH ₃ COOCH ₂ CH ₂ C	 DC ₂ H ₅		Ν	73	73								
Chloral Hydrate CCL ₃ CH (OH) ₂	All		180	C to 73	140	120	140		120				

	Plastics at Maximum Operating Temperature (F)												
Chemicals and													
Formula	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	РК		
Chloramine	Dilute		Ν	73	73	73			73				
NH ₂ Cl													
Chloric Acid	10%		180	73	140	73			73				
HCLO3 07H2 O	20%		185	73	140	73			73				
Chlorine Gas	0-20	Ν	C to	Ν	C to	C to		R to	C to				
(Moisture Content)	PPM		73		73	73		212	73				
	20-50	Ν	Ν	Ν	Ν	C to			C to				
	PPM					73			73				
	50+	Ν	Ν	Ν	Ν	C to		Ν	C to				
	PPM					73			73				
Chlorine	Liquid	Ν	Ν	Ν	Ν	Ν			Ν		Ν		
Chlorinated Water	10		180	180	140	140	140		140				
	PPM												
Chlorinated Water	Sat'd		180	180	140	C to	140	R to	C to				
						120		212	120				
Chloroacetic Acid	50%	Ν	180	C to	140	120	Ν		120				
CH ₂ CICOOH					73								
	>10%							R to					
								140					
Chloroacetyl Chlori	de				73								
CICH ₂ COCI													
Chlorobenzene	Dry	Ν	Ν	73	Ν	C to	Ν		C to				
$C_6 H_5 CI$						75			75				
	Liquid							R to	R to	C to			
								140	68	176			
Chlorobenzyl Chlor	ide		Ν		Ν	C to			C to				
CIC ₆ H ₄ CH ₂ CI						120			120				

Plastics at Maximum Operating Temperature (F)													
Chemicals and													
Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК		
Chloroethanol	Liquid							N 122	R to				
Chloroform CHCl₃	Dry	Ν	Ν	Ν	Ν	C to 75	C to 73		C to 75				
	Liquid							R to 212	N		C to 73		
Chloromethane	Gas							R to 212					
Chloropicrin CCL ₃ NO ₂					Ν	73			73				
Chlorosulfonic Acic CISO ₂ OH	I		73	Ν	73	C to 120	Ν		C to 120				
	50%							R to 68					
	100%					Ν			N				
Chromic Acid H ₂ CrO ₄	Sat'd							R to 212					
	10%	73	180	140	140	73	140	R to 212	73	Ν			
	20%							R to 212					
	25%							R to 212					
	30%	Ν	180	73	140	73	140	R to 212	73				
	40%	Ν	180	73	140	73	73	R to 212	73				
	50%	Ν	C to 140	73	N	73	N	R to 212	73				

Plastics at Maximum Operating Temperature (F)													
Chemicals and													
Formula C	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	РК		
	4004												
Chromium Potassium Sulfate	>10%							R to 212					
CrK(SO ₄) ₂ o12H ₂ O		-		73		73			73				
	Sat'd						R to						
							212						
Citric Acid	Sat'd	160	180	140	140	140	140	R to	140	C to			
C ₆ H ₈ O ₇								248		140			
			O 1	70	4.40	70	4.40	D.(70				
Coconut Oil			C to 180	73	140	73	140	R to 248	73				
								-					
Cod Liver Oil	Work Sol.							R to					
								248					
Coffee			180	140	140	140			140				
Coke Oven Gas				73	140	140			140				
Copper Acetate	Sat'd		73	73	73								
Cu(C ₂ H ₃ O ₂) ₂ oH ₂ C	C												
Connor Corbonata	Sat'd		190		140	140			140				
Copper Carbonate CuCO ₃	Salu		180		140	140			140				
Copper Chloride	Sat'd	73	180	140	140	140	140		140				
CuCl ₂													
Copper Cyanide	Sat'd		180		140	140	140	R to	140				
Cu(CN) ₂								212					
Coppor Elucrido	2%		190	72	140	140	140		140				
Copper Fluoride CuF ₂ o2H ₂ O	270		180	73	140	140	140		140				
Copper Nitrate	30%		180	140	140	140	140						

Plastics at Maximum Operating Temperature (F)												
Chemicals												
and Formula	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	РК	
Cu(NO ₃) ₂ o3H ₂ O	50%							R to 212				
Copper Sulfate CuSO ₄ o5H ₂ O	Sat'd	120	180	120	140	140	140	R to 212	140	R to 194		
Corn Oil			C to 180	73	140	120			120			
Corn Syrup			185	140	140	140			140			
Cottonseed Oil		120	C to 180	140	140	R to 140	140		R to 140			
Creosote			N	73	N	140			140			
Cresol CH ₃ C ₆ H ₄ OH	90%	Ν	Ν	R to 73	Ν	73	Ν	R to 68	73			
Cresylic Acid	50%		180		140	C to 73	Ν		C to 73			
Croton Aldehyde CH₃ CH:CHCHO			Ν	C to 73	N							
	Liquid							R to 104				
Crude Oil			C to 180	140	140	C to 120	C to 73	R to 212	C to 120	R to 140		
Cupric Chloride	20%										R to 73	
Cupric Fluoride CuF ₂			180		140	140			140			

Plastics at Maximum Operating Temperature (F)												
Chemicals												
and Formula	Concentration	ABS	CPVC	РР	PVC	PE	PB	PVDF	PEX	PA 11	РК	
Cupric Sulfate CuSO ₄ o5H ₂ O	Sat'd	100	180	73	140	140						
Cuprous Chloride CuCl	Sat'd	70	180		140	140			140			
Cyclohexane C ₆ H ₁₂		73	Ν	N	Ν	Ν		R to 248	N	C to 140		
Cyclohexanol C ₆ H ₁₁ OH		C to 120	Ν	140	Ν	73	C to 73	R to 104	73			
Cyclohexanone C ₆ H ₁₀ O	 Liquid	Ν	Ν	73	Ν	120	Ν	Ν	C to 176	C to 140		
Detergents (Heavy Duty)			C to 180	180	140	R to 140			R to 140		R to 73	
Dextrin (Starch Gum)	Sat'd		180	140	140	140	140		140			
Dextrose	Sat'd		180	140	140	140	140		140			
Diacetone Alcohol CH ₃ COCH ₂ C(CH			Ν	120	Ν					C to 140		
Dibutoxyethyl Ptha C ₆ H ₄ (COOO ₂ H ₂				Ν		Ν						
n-Dibutyl Ether C4 H9 OC4 H9						73			73			
Dibutyl Phthalate C ₆ H ₄ (COOC ₄ H ₉		Ν	Ν	73	Ν	73			73			

Plastics at Maximum Operating Temperature (F)												
Chemicals and												
Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК	
Dibutyl Sebacate				73	73	73			73			
C ₄ H ₉ OCO (CH ₂) ₈ C	DCOC4 H9											
Dichloroacetic Acid	50%							R to 176				
Dichlorobenzene		Ν	Ν	C to	Ν	C to			C to		R to 73	
$C_6 H_4 Cl_2$				73		120			120			
	Liquid							R to 140				
Dichloroethylene			Ν	C to	Ν	C to			C to			
C ₂ H ₂ Cl ₂				73		120			120			
	Liquid							R to 248				
Diesel Fuels			C to	140	140	73	C to	R to	73			
			180				73	212				
Diethanolamine	Solid							Ν				
	20%								R to 194			
Diethylamine		N	N		N	C to	N	N	C to			
C ₄ H ₁₀ NH						120			120			
Diethyl Ether		Ν	Ν	73	73	C to			C to	140		
	0.411		400	4.40	1.10	140	4.40		140			
Diglycolic Acid O(CH ₂ COOH) ₂	Sat'd 10%		180 	140 	140 	140 	140 	 R to	140 			
	1070		_==					140				
Dimethylamine (CH ₃) ₂ NH				73	140	73	Ν	Ν	73			

Plastics at Maximum Operating Temperature (F)												
Chemicals and Formula C	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК	
Dimethyl Formamide HCOH(CH ₃) ₂	e Liquid	N	N 	180 	N 	120 			120 N		C to 73	
Dimethylhydrazine $(CH_3)_2 NNH_2$	-				Ν							
Dimethyl Phthalate $OOC_9 H_{19}$)			Ν		 73	C to			C to 73			
Dioctyl Phthalate C ₆ H ₄ (COOC ₈ H ₁₇) ₂		N	Ν	C to 73	Ν	73	C to 73		73	140		
Dioxane O:(CH ₂) ₄ :O			Ν	C to 140	Ν	140			140			
	Liquid							C to 68				
Diphenyl Oxide (C ₆ H ₅) ₂ O	Sat'd					73			73			
Disodium Phosphate Na ₂ HPO ₄)		180	140	140	140	140		140			
Dishwashing Liquid (Cascade)											R to 73	
Dow Therm A					N							
Ethanol	40%							R to 68				
	95%							R to 122	R to 140			
	Liquid							R to 122	R to 140		R to 176	
Ether		Ν	Ν	C to	Ν	73	Ν		73			

Plastics at Maximum Operating Temperature (F)												
Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	РК	
ROR				73								
Ethyl Acetate CH ₃ COOC ₂ H ₅		Ν	Ν	C to 140	N	73	C to 73		73	140	R to 73 C to 176	
	Liquid							C to 68				
Ethyl Acetoacetate CH ₃ COCH ₂ COOC	 2 H5	Ν	Ν		Ν							
Ethyl Acrylate CH ₂ :CHOOC ₂ H ₅			Ν		Ν							
Ethyl Alcohol (Ethanol) C ₂ H ₅ OH			C to 140	140	140	140	140		140	C to 104	R to 176	
Ethyl Benzene C ₆ H ₅ C ₂ H ₅				C to 73	Ν	C to 73						
Ethyl Chloride C₂ H₅ Cl	Dry		Ν	C to 73	N	C to 73			C to 73			
	Gas							R to 212				
Ethyl Chloroacetate CCH ₂ CICO ₂ C ₂ H ₅	;				Ν							
Ethyl Ether (C ₂ H ₅) ₂ O	Liquid		Ν	Ν	Ν	Ν	Ν	R to 122	R to 68			
Ethylene Bromide BrCH ₂ CH ₂ Br	Dry		Ν		Ν		Ν					
Ethylene Chloride	Dry	Ν	Ν	C to	Ν	C to			C to			

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	РК
CICH ₂ CH ₂ CL				73		140			140		
Ethylene Chlorohy	drin		Ν	73	Ν		Ν				
CICH2 CH2 OH	Liquid							C to 68			
Ethylene Diamine $NH_2 CH_2 CH_2 NH_2$		Ν		73	Ν	140			140		
Ethylene Dichlorid C ₂ H ₄ Cl ₂	e Dry	Ν	Ν	C to 140	Ν	C to 73	140		C to 73		
Ethylene Glycol CH ₂ OHCH ₂ OH	Liquid	73	C to 180	212	140	140	140	R to 212	R to 212		C to 176
Ethylene Oxide $CH_2 CH_2 O$			Ν	C to 73	Ν	73			73	C to 140	
2-Ethylhexanol CH ₃ (CH ₂) ₃ CHC ₂	 H₅ CH₂ OH					73			73		
Fatty Acids R-COOH		160	73	120	140	120	150		120	194	
Ferric Chloride (Aqueous) FeCl ₃	Sať d	120	180	140	140	140	150	R to 212	140		
Ferric Hydroxide Fe(OH) ₃	Sat'd	160	180	140	140	140			140		
Ferric Nitrate Fe(NO ₃) ₃ 9H ₂ O	Sat'd	160	180	140	140	140	140	R to 212	140		
Ferric Sulfate		160	180	140	140	140	140		140		
Fe ₂ (SO ₄) ₃	Sat'd							R to			

Plastics at Maximum Operating Temperature (F)											
Chemicals and Formula C	Concentration	ABS	CPVC	РР	PVC	PE	РВ	PVDF 212	PEX	PA 11	РК
Ferrous Chloride FeCl ₂	Sat'd	160	180	140	140	140	140	R to 212	140		
Ferrous Hydroxide Fe(OH) ₂	Sat'd	160	180	140	140	140			140		
Ferrous Nitrate Fe(NO ₃) ₂		160	180	140	140	140			140		
Ferrous Hydroxide Fe(OH) ₂	Sat'd	160	180	140	140	140			140		
Ferrous Nitrate Fe(NO ₃) $_2$		160	180	140	140	140			140		
Ferrous Sulfate FeSO₄		160	180	140	140	140	140		140		
	20%										R to 73
	Sat'd							R to 212			
Ferrous Chloride FeCl ₂	Sat'd	160	180	140	140	140	140	R to 212	140		
Fish Oil			180	180	140	140	140		140		
Fluoboric Acid HBF₄	 Solid	73 	73 	140 	140 	140 		 R to 104	140 		
Fluorine Gas (Dry) F ₂	100%		73	Ν	73	C to 73	C to 73		C to 73	Ν	

	Plastics at Maximum Operating Temperature (F)												
Chemicals													
and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК		
Fluorine Gas (Wet	t)	Ν	73	Ν	73	Ν	Ν		Ν	Ν			
F ₂													
Fluosilicic Acid	25%							R to 212					
H ₂ SiF ₆	30%		R to	140	140	140		R to					
	40%		140 					212 R to					
	50%		73	73	140	140	140	140 R to					
	Sat'd							212 R to 212					
Formaldehyde	Dilute	160	73	140	140	140	140	R to		C to			
НСНО	35%	160	C to	140	140	140	140	176 	140	104 			
	37%	160	73 C to 73	140	140	140	140	R to 212	140				
	50%		C to		140	140	140		140				
Formic Acid HCOOH		Ν	C to 73	140	73	140	150		140				
	10%							R to 212	R to 140	N	Ν		
	40%							R to 212	R to 140				
	50%							R to 176	R to 140				
	85%							R to 212					
	100%					140			140				
Freon 11 CCl₃F	100%	Ν	73	Ν	140	73			73				

	Plastics at Maximum Operating Temperature (F)											
Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	РК	
Freon 12 CCl ₂ F ₂	100% Work. Sol.		73 	73 	140 	73 		 R to 212	73 R to 68	68 		
Freon 21 CHCl ₂ F	100%			N	Ν	C to 120			C to 120			
Freon 22 CHCIF ₂	100%		73	73	Ν	C to 120			C to 120	68		
Freon 113 $C_2Cl_2F_3$	100%			Ν	140	73			73			
Freon 114 $C_2Cl_2F_4$	100%			Ν	140	73			73			
Fructose C ₆ H ₁₂ O ₆	Sat'd	73	180	180	140	140	140		140			
Fruit Juice	Work. Sol.							R to 212		104		
Furfural C4 H3 OCHO	100%	Ν	Ν	N	Ν	C to 140			C to 140	C to 140		
Gallic Acid C ₆ H ₂ (OH) ₃ CO ₂ H	 HoH2 O		73		140	73			73			
Gasoline, Leaded*		Ν	Ν	Ν	140	73	Ν		73			
Gasoline, Unleade Gasoline (Fuel)	:d*	N 	N 	N 	140 	73 	N 	 R to 212	73 	 R to 160	R to 176	
Gasohol*		Ν	Ν	Ν	140	73	Ν		73			

	Plastics at Maximum Operating Temperature (F)													
Chemicals and														
Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК			
Gasoline, Sour*		Ν	N	N	140	C to 73	N		C to 73					
Gelatin			180	180	140	140	140		140					
Glucose		120	180	212	140	140	140		140					
$C_{6} H_{12} O_{6} oH_{2} O$	10%							R to 248						
Glue				140	140	140			140					
Glycerine		140	180	212	140	140	140		140					
C ₃ H ₅ (OH) ₃	Liquid							R to 248						
Glycol OHCH2 CH2 OH			C to 180	212	140	140			140	C to 140				
Glycolic Acid	Sat'd		180	73	140	140			140					
OHCH ₂ COOH	10%							R to 212						
	30%							R to 140						
	65%							R to 212						
Glyoxal CHCCHO						140			140					
Grape Sugar			180		140									
Grapefruit Juice	Work. Sol.							R to 122						
Grease										194				
Green Liquor		160	180		140		140							

Plastics at Maximum Operating Temperature (F)											
Chemicals and											
Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК
Heptane (Type 1)		73	180	Ν	140	73	Ν		73		
C ₇ H ₁₆	Liquid							R to	C to		
								212	176		
n-Hexane		С	73	73	73						
C ₆ H ₁₄	Liquid							R to			R to 73
								176			
Hexanol, Tertiary			180		140	140	140		140		
Type I											
CH ₃ (CH ₂) ₄ CH ₂ O	н										
Hydraulic Oil					73	73			73		
(Petroleum)											
Hydrazine			Ν	73	N						
H ₂ NNH ₂				75							
Hydrobromic Acid	20%	73	73	140	140	140	140	R to	140		
Hbr								212			
	50%	Ν		120		140		R to	140		
								140			
	66%							R to			
								212			
Hydrochloric Acid	1%										R to 176
Hcl											
	10%	C to	180	140	140	140	140	R to	R to	C to	N
		120						212	212	104	
	20%							R to	R to		
								212	212		
	30%	C to	180	140	140	140	140	R to	R to		
	Canc	73						212	140 D. to		
	Conc.								R to		
									140		

	Plastics at Maximum Operating Temperature (F)												
Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK		
Hydrocyanic Acid		160	180	73	140	140	140		140				
HCN	Sat'd							R to 248					
	10%							R to 248					
								210					
Hydrofluoric Acid HF	Dilute	73	73	180	73	140	140	R to 212	140				
	30%	Ν	73	140	73	140	140		140				
	40%							R to 212					
	50%	Ν	Ν	73	73	120	140	R to 212	120				
	60%					140		R to 140	140				
	70%							R to 212					
	100%	Ν	Ν	C to 73	Ν	120			120				
	Gas							R to 104					
Hydrofluosilic Acid	50%	N	140		140	140			140				
Hydrogen	Gas		73	140	140	140	140	R to 248	140	194			
Hydrogen Cyanide HCN				73	140								
Hydrogen Fluoride Anhydrous			С	73	N								

Plastics at Maximum Operating Temperature (F)											
Chemicals and Formula Co	oncentration	ABS	CPVC	РР	PVC	PE	РВ	PVDF	PEX	PA 11	РК
Hydrogen Peroxide H2 O2	3%										R to 73
	10%							R to 212			
	30%							R to 212		C to 104	
	50%		180	73	140	140	N	R to	140		
	90%		180	C to 73	140	73	Ν		73		
Hydrogen Phosphide (Type I) PH3			73		140	140	140		140		
Hydrogen Sulfide H_2 S	Dry		180	150	140	140	140	R to 248	140		
	Wet		180		140	140			140		
Hydrogen Sulfite H ₂ SO ₃	10%					140		R to 248	140		
Hydroquinone C ₆ H ₄ (OH) ₂	Sat'd		180		140	140	140			140	
Hydroxylamine Sulfate (NH ₂ OH)oH ₂ SO ₄			180		140	140			140		
Hypochlorous Acid	10%	73	180	73	140	140	140		140		
HOCI	70%							R to 212			
Inks				140		140			140		

Plastics at Maximum Operating Temperature (F)												
Chemicals and												
Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК	
lodine	10%	Ν	73	73	Ν	C to	Ν	R to	C to			
l ₂						120		176	120			
Isobutyl Alcohol		C to	C to	73		140			140			
(CH ₃) ₂ CHCH ₂ OF	1	73	73									
Isooctane				C to		73			73			
(CH ₃) ₃ CCH ₂ CH(0	CH ₃)2			73								
	Liquid							R to 212				
Isopropyl Acetate		Ν	Ν			73			73			
CH ₃ COOCH(CH ₃)2											
Isopropyl Alcohol			C to	212	140	140	140	C to	140		R to 73	
(CH ₃) ₂ CHOH			180					212				
Isopropyl Ether			Ν	C to	Ν	73			73			
(CH ₃) ₂ CHOCH(C	H ₃) ₂				73							
JP-4 Fuel*			C to	C to	140	73			73			
			73	73								
JP-5 Fuel*			C to	C to	140	73			73			
			73	73								
Kerosene*		73	73	C to	140	C to	C to		C to			
				140		140	73		140			
Ketchup					73							
Ketones		Ν	N	C to	N	73			73			
				73								
	Work Sol								R to			
								302				
Kraft Liquors		73	180		140	120	140		120			

	Plastics at Maximum Operating Temperature (F)													
Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК			
Lactic Acid CH₃ CHOHCOOH	10%							R to 140						
	20%										R to 73			
	25%	73	180	212	140	140	140		140					
	80%	Ν	C to 180	140	73	140			140					
	Liquid							R to 212		R to 194				
Lard Oil			C to 180		140	C to 120	73		C to 120					
Latex				140		140			140					
Lauric Acid CH ₃ (CH ₂) ₁₀ COO	 H		180	140	140	120			120					
Lauryl Chloride (Type I) C ₁₂ H ₂₅ Cl			73		140	120	73	R to 248	120					
Lead Acetate Pb(C ₂ H ₃ O ₂) o3H	Sat'd ₂ O		180	180	140	140	140	R to 212	140					
Lead Chloride PBCl ₂			180	140	140	120			120					
Lead Nitrate PB(NO ₃) ₂	Sat'd		180	140	140	120			120					
Lead Sulfate PbSO ₄			180	140	140	120			120					

Plastics at Maximum Operating Temperature (F)													
Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК		
Lead Tetraethyl								R to 212					
Lemon Oil			N	C to 73									
Lemon Juice						C to 140			C to 140				
Ligroin				140									
Lime Slurry						140			140				
Lime Sulfur			73	73	73	120	140		120				
Linoleic Acid CH ₃ (CH ₂) ₄ HC: CHCH ₂ CH: CH(CH ₂) ₇ COOH			180	180	140		73						
Linoleic Oil (Type I)					140		73						
Linseed Oil		73	C to 180	140	140	R to 73	73	R to 248	R to 73	194			
Liqueurs				140	140	120	140		120				
Lithium Bromide LiBr				140	140	140			140				
Lithium Chloride LiCl				140	140	120			120				
Lithium Hydroxide LiOH				140		120			120				

		Pla	stics at N	laximum	Operati	ng Temp	erature (<u>F)</u>			
Chemicals and											
Formula Co	oncentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Lubricating Oil (ASTM #1)			180	C to 140	140	73	140	R to 248	73		
Lubricating Oil (ASTM #2)			180	C to 140	140	73	140		73		
Lubricating Oil (ASTM #3)			180	C to 140	140	73	140		73		
Magnesium Carbona MgCO ₂	te	120	180	212	140	140	140	R to 212	140		
Magnesium Chloride MgCl2	Sat'd	120	180	140	140	140	140	R to 140	140		
	50%							R to 212		194	
Magnesium Citrate MgHC ₆ H ₅ O ₇ o5H ₂ C			180		140	140			140		
Magnesium Hydroxide Mg(OH) ₂	Sat'd	160	180	180	140	140	140	R to 212	140		
Magnesium Nitrate Mg(NO ₃) ₂ o2H ₂ O		160	180	212	140	140	140	R to 248	140		
Magnesium Oxide MgO		160									
Magnesium Sulfate MgSO ₄ $_{0}$ 7H ₂ O		160	180	212	140	140	140	R to 212	140		
Maleic Acid HOOCCH:CHCOOH	Sat'd	160	180	140	140	140	140	R to 140	140		
	50%							R to			

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
1 0111010	Contentation		01 + 0		110	12	12		1 201		
	10%							212 R to			
	1078							140			
Malic Acid			180	140	140	140	140		140		
COOHCH ₂ CH(OI	H)COOH										
Manganese Sulfat	te		180	180	140	140			140		
$MnSO_4 o4H_2 O$											
Margarine	Work. Sol.							R to			
Marganne	WOIK. 501.							248			
Mercuric Chloride			180	180	140	140	140		140		
HgCl ₂	Sat'd							R to			
								212			
								_			
Mercuric Cyanide	Sat'd		180	140	140	140	140	R to 212	140		
Hg(CN) ₂								212			
Mercuric Sulfate	Sat'd		180	140	140	140			140		
HgSO ₄											
Mercurous Nitrate	sat'd		180	140	140	140	140		140		
$HgNO_3 o2H_2 O$											
	10%							R to			
								212			
Mercury	Liquid		180	140	140	140	140	R to	140	194	
Hg	Liquid		100	110	110	110	110	248	110	101	
C C											
Methane		Ν	73	73	140	140			140	140	
CH ₄											
Methanol			Ν	180	140	R to	140		R to		
(Methyl Alcohol)						140			140		

			astics at 1	wiaxiiiiui	n opera	ing rong	Jorature	(1)			
Chemicals and											
	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК
CH₃ OH	5%							R to 140			
	Liquid							C to 176	R to 140		R to 176
Methoxyethyl Oleate	e				73						
$CH_3 OCH_2 CH_2 OO$	CC ₁₇ H ₃₃										
Methyl Acetate CH ₃ CO ₂ CH ₃		Ν	Ν	140	Ν	C to	 120		C to	 120	
Methyl Acrylate CH ₂ :CHOOCH ₃	Tech Pure					140			140		
Methyl Amine CH ₂ NH ₃			Ν	Ν	Ν						
Methyl Bromide CH₃ Br			Ν	Ν	Ν	C to 73			C to 73	R to 68	
Methyl Butyl Ketone	e Liquid							C to 122			
Methyl Cellosolve HOCH ₂ CH ₂ OCH ₃			Ν	73	Ν	C to 120			C to 120		
Methyl Chloride CH₃ Cl	Dry	Ν	Ν	Ν	Ν	C to 120	Ν		C to 120	R to 68	
Methyl Chloroform CH ₃ Ccl		Ν	Ν	C to 73	Ν	C to 120			C to 120		
Methyl Ethyl Ketone (MEK) CH3 COC2 H5	e 100%	Ν	Ν	73	Ν	Ν	73	C to 68	R to 140	C to 140	R to 73 C to 176

Plastics at Maximum Operating Temperature (F)													
Chemicals and Formula	Concentration	ABS	CPVC	РР	PVC	PE	PB	PVDF	PEX	PA 11	РК		
Methyl Isobutyl Carbinol (CH ₃) ₂ CHCH ₂ CH	 I(CH₃)OH		Ν		Ν								
Methyl Isobutyl Ketone (CH ₃) ₂ CHCH ₂ CC	 DCH ₃	Ν	Ν	73	Ν	73			73				
Methyl Isopropyl Ketone CH ₃ COCH(CH ₃) ₂			Ν		Ν	73			73				
Methyl Methacryla CH ₂ :C(CH ₃)COO			Ν		73	140		R to 68	140				
Methyl Sulfate (CH ₃) ₂ SO ₄			73	C to 73	73	140				68			
Methylene Bromid CH ₂ Br ₂	e		Ν	Ν	Ν	C to 120			C to 120				
Methylene Chlorid CH ₂ Cl ₂	e 100%		Ν	Ν	Ν	Ν	73	C to 104	N		C to 176		
Methylene Chloro- bromide CH ₂ ClBr			Ν		Ν								
Methylene lodide CH ₂ I ₂			Ν	N	Ν	C to 120			C to 120				
Methysulfuric Acid CH ₃ HSO ₄			180	140	140								

Plastics at Maximum Operating Temperature (F)												
Chemicals												
and Formula C	oncentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК	
Milk		160	180	212	140	140	140	R to 212	140	194		
Mineral Oil		73	180	C to 140	140	R to 73	C to 73	R to 212	C to 176			
Molasses			180	140	140	140	140		140			
Monochloroacetic Acid CH7 CICOOH	50%			140	140	140			140			
Monochlorobenzene C ₆ H ₅ Cl	Tech Pure		Ν	73	Ν	C to 120			C to 120			
Monoethanolamine HOCH ₂ CH ₂ NH ₂					Ν							
Motor Oil			180	C to 140	140	R to 140			R to 140			
Morpholine C4 H8 ONH				140		140			140			
Mustard, Aqueous	Work. Sol.							R to 248				
N-methyl Pyrrolidone	e 100%										C to 73	
Naphtha	-		73	73	140	73	73	R to 122	C to 176	R to 140		
Naphthalene C_{10} H $_8$			Ν	73	Ν	73	73		73	R to 194		
Natural Gas		73		73	140	140	73		140			

Plastics at Maximum Operating Temperature (F)													
Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК		
Nickel Acetate Ni(OOCH ₃) ₂ o4H ₂				73		140			140				
Nickel Chloride NiCl2	Sat'd	160	180	180	140	140	140	R to 212	140				
Nickel Nitrate Ni(NO ₃) ₂ o6H ₂ O	Sat'd	160	180	180	140	140	140	R to 248	140				
Nickel Sulfate NiSO₄	Sat'd	160	180	180	140	140	140	R to 212	140				
Nicotine C ₁₀ H ₁₄ N ₂			180		140	140	140		140				
Nicotinic Acid Csh₄ NCOOH			180		140	140	140	R to 212	140				
Nitric Acid HNO3	5%							R to 176	C to 140	Ν			
	10%	C to 73	180	180	140	73	C to 73	R to 212	C to 140				
	20%							R to 212	C to 140				
	25%							R to 212	C to 140				
	30%	Ν	R to 130	140	140	73	Ν	R to 212	C to 140				
	35%								C to 140				
	40%	N	R to 120	73	140	73	N	C to 248	140				
	50%	Ν	110	Ν	100	C to 73	Ν		140				

Plastics at Maximum Operating Temperature (F)											
Chemicals											
and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК
	65%							C to			
	05%							248			
	70%	Ν	100	N	73	C to	N		C to		
						73			73		
	85%							Ν			
	95%						Ν				
	100%	Ν	Ν	Ν	Ν	Ν	Ν		Ν		
Nitrobenzene	100%	N	N	C to	N	N		R to	N		
$C_{6}H_{5}NO_{2}$				140				122			
Nitroglycerine					N	73			73		
CH ₂ NO ₃ CHNO	3 CH2 NO3										
Nitroglycol					Ν						
Nitrous Acid	10%		180	C to	140	73			73		
HNO ₂	1070		100	73	140	70			10		
Nitrous Oxide			73	73	73	73			73		
N ₂ O			10	10	10	70			10		
n-Octane			C to								
CH ₈ H ₁₈			73								
Olaia Aaid		100	100	70	140	C to	450	Dite	0.45	Dite	
Oleic Acid CH ₃ (CH ₂) ₇ CH:		160	180	73	140	C to 140	150	R to 248	C to 140	R to 140	
CH(CH ₂) ₇ COO						140		240	140	140	
Oleum		Ν	N	N	N	N	N	N	N		
x H ₂ SO ₄ oySO ₃											
Olive Oil		160	C to	73	140	140		R to	R to		
			180					248	68		

Plastics at Maximum Operating Temperature (F)												
Chemicals and Formula Co	oncentration	ABS	CPVC	РР	PVC	PE	РВ	PVDF	PEX	PA 11	РК	
Oxalic Acid HOOCCOOHo2H ₂ O	50% 10%	160	180	140	140	140	140	 R to	140	 R to		
	Sať d							140 R to 122		140 		
Oxygen Gas O ₂		160	180	Ν	140	140		R to 212	140	R to 140		
Ozone O ₃			180	C to 73	140	C to 120			C to 120	C to 68		
	Sat'd							R to 68				
Palm Oil				73		140			140			
Palmitic Acid CH ₃ (CH ₂) ₁₄ COOH	10%	73	73	180	140	120	150		120			
	70%		73	180	73	120			120			
Paraffin C ₃₆ H ₇₄		73	180	140	140	C to 140		R to 212	C to 140			
Peanut Oil			C to 180	140				R to 248				
n-Pentane CH ₃ (CH ₂) ₃ CH ₃		Ν	C to 180	Ν	C to 140	C to 120			C to 120			
Peracetic Acid $CH_3 COOOH$	40%	Ν		73	73							

	Plastics at Maximum Operating Temperature (F)													
Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK			
											Ĩĸ			
Perchloric Acid (Type I)	10%							R to 212						
(Type I) HclO₄	20%							R to						
								212						
Perchloric Acid (Type I) HclO₄	15%		180	140	73	140	C to 73		140					
Perchloric Acid	70%	73	180	C to	73	73	N	R to	73					
(Type I) HclO₄	1070	15	100	73	75	75		212	10					
Perchloroethylene		N	C to	C to	C to	C to		C to	C to	C to				
Cl ₂ C:CCl ₂			180	73	140	120		212	120	68				
Perphosphate			73	140	73									
Petroleum Ether								R to 212						
Phenol		N	73	73	73	140	73		140	N				
C ₆ H₅ OH	5%								R to					
									248					
	50%							R to 176						
	Solid							C to 122						
	90%					R to 140			R to 140					
Phenylhydrazine			N	N	N	C to		R to	C to					
C_6 H_5 $NHNH_2$							120		104	120				

<u>Plastics at Maximum Operating Temperature (T)</u>												
Chemicals and												
Formula	Concentratio	n	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК
Phenylhydrazine	10%								R to			
Hlydrochloride									140			
Phosphine	Gas								R to 104			
Phosphoric Acid H ₃ PO ₄	10%			180	212	140	140	140		140		
	50%		73	180	212	140	140	73	R to 212	140	C to 104	
	75%								R to 212			
	85%			180	212	140	73		C to 284	73		
	98%								R to 212			
Phosphoric Anhyc P ₂ O ₅	dride			73	73	73						
Phosphorous (Red	d)					73	140			140		
Phosphorous (Yel	low)					73	140			140		
Phosphorous Oxychloride	Liquid								R to 68			
Phosphorous Pen $P_2 O_5$	toxide			73	73	73	140			140		
Phosphorous Trichloride Pcl ₃				Ν	73	Ν	120	C to 73	C to 122	120		
Photographic Solu	utions			180	140	140	140	140		140		
Phtalic Acid					140	C to	140			140		

		1	lusties ut	u annu	in Opera	ing rom	perature	<u> </u>			
Chemicals and											
Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК
C ₆ H ₄ (COOH) ₂					140						
	Susp.							R to			
								212			
Picric Acid	10%	N	N	73	N	73	73	R to	73	C to	
C ₆ H ₂ (NO ₂) ₃ OH				-		-	-	212	-	68	
	50%							R to			
								212			
	Sat'd.							R to			
								212			
Pine Oil			N	140		R to			R to		
						73			73		
Plating Solutions			180	140	140	140	C to		140		
Brass)							73				
Plating Solutions			180	140	140	140	C to		140		
Cadmium)							73				
Plating Solutions			180	140	140	140	C to		140		
Chrome)							73				
Plating Solutions			180	140	140	140	C to		140		
Copper)				-	-	-	73		-		
,											
Plating Solutions			180	140	140	140	C to		140		
Gold)							73				
Plating Solutions			180	140	140	140	C to		140		
Lead)			100	110	110	110	73		110		
,											
							_				
Plating Solutions			180	140	140	140	C to		140		
(Nickel)							73				

Plastics at Maximum Operating Temperature (F)													
Chemicals and													
	oncentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	РК		
Plating Solutions			180	140	140	140	C to		140				
(Rhodium)							73						
Plating Solutions			180	140	140	140	C to		140				
(Silver)							73						
Plating Solutions			180	140	140	140	C to		140				
(Tin)							73						
Plating Solutions			180	140	140	140	C to		140				
(Zinc)							73						
Potash (Aq)	Sat'd		180		140	140			140				
КОН													
Potassium Alum			180		140	140			140				
ALK (SO ₄) ₂ 012H ₂ C)												
Potassium Aluminum)		180	180	140		C to						
Sulphate							73						
Potassium Amyl					73								
Xanthate													
Potassium Bicar-	Sat'd		180	140	140	140	140	R to	140				
bonate								212					
KHCO₃													
Potassium Bi-	Sat'd		180	140	140		C to	R to					
chromate K ₂ Cr ₂ O ₇	40%						73 	212 R to					
$\mathbf{R}_2 \mathbf{O}_2 \mathbf{O}_7$	40%							212					
								_					
Potassium Bisulfate KHSO ₄			180	212	140	140		R to 212	140				

Plastics at Maximum Operating Temperature (F)													
Chemicals and													
Formula Co	oncentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК		
Potassium Borate $K_2 B_4 O_7 o5H_2 O$			180	140	140	140	140	R to 212	140				
Potassium Bromate KbrO ₃			180	212	140	140	140	R to 212	140				
	10%								R to 212				
Potassium Bromide Kbr			180	212	140	140	140	R to 248	140				
Potassium Carbonate $K_2 CO_3$	9	73	180	180	140	140	140	Ν	140				
Potassium Chlorate KClO ₃ (Aqueous)		160	180	212	140	140	140	Ν	140				
Potassium Chloride Kcl		160	180	212	140	140	140	R to 212	140				
Potassium Chromate $K_2 CrO_4$			180	212	140	140	140		140				
Potassium Cyanide KCN			180	180	140	140	140	R to 212	140				
Potassium Dichromate K ₂ Cr ₂ O ₇	Sat'd		180	180	140	140	140		140				
Potassium Ethyl Xanthate KS ₂ COC ₂ H ₅					73								
Potassium			180	180	140	140	140	R to	140				

								<u> </u>				
Chemicals and Formula C	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	РК	
Ferricyanide K ₃ Fe(CN) ₆								248				
Potassium Ferroycanide K4 Fe(CN)6 o3H2 O			180	180	140	140		R to 248	140			
Potassium Fluoride KF			180	180	140	140	140	R to 212	140			
Potassium Hydroxid KOH	e 4%							C to 104				
	10%							R to 176				
	20%							R to 176				
	25%	160	180	212	140	R to 140	140		R to 140			
	45%										R to 73	
	50%							R to 176		C to 104		
Potassium hydrogen Sulphite	10%							R to 140				
	Sat'd							R to 212				
Potassium		160	180		140	120			120			
Hyprochlorite KclO	3	%						 212	R to			
Potassium lodide Kl			180	73	73	140		R to 212	140			
Potassium Nitrate		160	180	140	140	140	140		140	C to		

Chemicals and											
Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК
KNO₃	50%							R to 212		104	
Potassium Orthophosphate	Sat'd							R to 212			
Potassium Perbora	ate		180	140	140	140	140		140		
Potassium Perchlo KClO ₄	orate		180	140	140	140	140		140		
Potassium Permanganate	10%		180	73	140	140	140	R to	140 176		
KmnO₄	20%							R to 212			
	25%		180	73	73	140			140		
	30%							R to 212			
	Sat'd							R to 212			
Potassium Persulfa $K_2 S_2 O_8$	ate		180	140	140	140	140	R to 176	140		
Potassium Sulfate K ₂ SO ₄		160	180	180	140	140	140	R to 212	140	194	
Potassium Sulfide K ₂ S			180	140		140	140	68	140		
Potassium Sulfite $K_2 SO_3 o2H_2 O$			180	140		140			140		
Propane C3 H8			73	73	140	140	73	R to 248	140	140	

Plastics at Maximum Operating Temperature (F)												
Chemicals and Formula C	oncentration	ABS	CPVC	РР	PVC	PE	PB	PVDF	PEX	PA 11	РК	
Propargyl Alochol HC:CCH ₂ OH			C to	140 180	140	140	140		140			
Propionic Acid CH3 CH2 CO2 H		Ν	N	140		140		R to 140	140			
Propyl Alcohol (Type I) CH ₃ CH ₂ CH ₂ OH		73	C to 73	140	140	R to 140	140	R to 122	R to 140			
Propylene Carbonate	e 100%										R to 73	
Propylene Dichloride CH3 CHCICH2 Cl	100		N	Ν	N	N			Ν			
Propylene Oxide CH3 CHCH2 O			Ν	73	Ν	140			140			
Pyridine N(CH)₄ CH			Ν	C to 140	Ν	73		R to 68	73	C to 68		
Pyrogallic Acid C ₆ H ₃ (OH) ₃					73							
Quinone C ₆ H ₄ O ₂				140		140			140			
Rayon Coagulating Bath			180		140	140	140		140			
Salicylaldehyde C ₆ H ₄ OHCHO				73	Ν	120			120			
Salicylic Acid C ₆ H ₄ (OH)(COOH)					140	140	140	 212	R to	140		

	Plastics at Maximum Operating Temperature (F)													
Chemicals and Formula	Concentration	ABS	CPVC	РР	PVC	PE	PB	PVDF	PEX	PA 11	РК			
Selenic Acid Aq. H ₂ SeO ₄			180		140	140	140		140					
Silicic Acid SiO ₂ onH ₂ O			180	140	140	140	140	R to 212	140					
Silicone Oil Silver Acetate	 Sat'd		180 	212 	73 	73 		 R to 212	73 					
Silver Chloride AgCl		160	180	140	140									
Silver Cyanide AgCN			180	180	140	140	140	R to 212	140					
Silver Nitrate AgNO ₃		160	180	180	140	R to 140	C to 73		R to 140					
	50%							R to 212						
Silver Sulfate $Ag_2 SO_4$			160	180	140	140	140 73	C to		140				
Soaps		73	180	140	140	R to 140	140		R to 140					
Sodium Acetate NaC ₂ H ₃ O ₂	Sat'd		180	212	140	140	140	R to 212	140					
Sodium Alum AlNa(SO ₄) ₂ o12H ₂	 2 O		180		140									
Sodium Aluminate Na ₂ Al ₂ O ₃	saťd				140									

Plastics at Maximum Operating Temperature (F)													
Chemicals and Formula C	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК		
Formula C	oncentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEA	PA 11	PK		
Sodium Benzoate			180	140	140	140	140		140				
$C_6 H_5 COONa$	35%							R to 68					
	50%							R to 212					
Sodium Bicarbonate NaHCO ₃		73	180	212	140	140	140	R to 212	140				
Sodium Bichromate	Sat'd		180		140								
Na ₂ Cr ₂ O ₇ o2H ₂ O	50%							R to 212					
Sodium Bisulfate		73	180	140	140	140	140		140				
NaHSO₄	50%							R to 212					
Sodium Bisulfite NaHSO ₃			180	140	140	140			140				
Sodium Borate (Borax) Na ₂ B ₄ O ₇ o10H ₂ O	Sat'd	160	180	180	140	140	140		140				
Sodium Bromide	Sat'd	120	180	140	140	140	140		140				
NaBr	50%							R to 248					
Sodium Carbonate Na ₂ CO ₃		73	180	212	140	140	140	Ν	140	R to 140			
Sodium Chlorate NaClO ₃	Sat'd		180	140	73	140	140	Ν	140				

Plastics at Maximum Operating Temperature (F)												
Chemicals												
and Formula C	oncentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК	
Sodium Chloride		120	180	212	140	140	140		140			
NaCl	Sat'd							R to		194		
	10%							212 R to			R to 176	
	1070							212				
Sodium Chlorite	25%		180	73	Ν	140			140			
NaClO ₂												
Sodium Chromate		120	180	140		140		R to	140			
$Na_2 CrO_4 o10H_2 O$								176				
Sodium Cyanide			180	180	140	140	140	R to	140			
NaCN			100	100	110	110	110	212	110			
Sodium Dichromate	20%		180	180	140	140	140		140			
$Na_2 Cr_2 O_7 o2H_2 O$												
Sodium Ferricyanide	Sat'd		180	140	140	140	140		140			
Na ₃ Fe(CN) ₆ o2H ₂ O												
Sodium Ferrocyanide	e Sat'd		180	140	140	140	140		140			
Na ₃ Fe(CN) ₆ o10H ₂ (100	140	140	140	140		140			
Sodium Fluoride		120	180	180	140	140	140	R to	140			
NaF								212				
Sodium Hydrogen	50%							R to				
Sulphite								212				
Sodium Hydroxide	1%								R to			
NaOH	170								140			
	5%							C to				
	150/	100	100	210	140	140	140	68	R to			
	15%	120	180	212	140	140	140		R to 140			
									-			

Plastics at Maximum Operating Temperature (F)													
Chemicals and													
	oncentration	ABS	CPVC	РР	PVC	PE	PB	PVDF	PEX	PA 11	РК		
	30%	120	180	212	140	R to	140	Ν	R to				
	40%					140 			140 R to				
	4078								140				
	50%	120	180	212	140	140	140		140	C to			
	60%								R to	104 			
	00 /8								140				
	70%	120	180	212	140	140	140		140				
Sodium Hypochlorite	·	120	180	73	73	140	140		140		N		
NaOClo5H ₂ O	2% Cl							R to 212					
	12.5% Cl							R to					
								68					
Sodium Iodide			180		140								
Nal													
Sodium Metaphosph (NaPO ₃)n	ate		180	120	140								
(
Sodium Nitrate	Sat'd	160	180	180	140	140	140	R to	140				
NaNO ₃								212					
Sodium Nitrite		160	180	73	140	140	140	R to	140				
NaNO ₂								212					
Sodium Palmitrate	5%		180	140	140								
CH ₃ (CH ₂) ₁₄ COONa													
Sodium Perborate		120	180	73	140	73			73				
NaBO ₂ 03H ₂ O		120	100	15	140	15			15				

Plastics at Maximum Operating Temperature (F)													
Chemicals and													
Formula C	oncentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК		
Sodium Perchlorate NaClO₄			180	212	140	140			140				
Sodium Peroxide Na ₂ O ₂	10%		180		140	140			140				
Sodium Phosphate NaH ₂ PO ₄	Acid	120	180	212	140	140	140	R to 140	140				
	Alkaline		120	180	212	140	140		140				
	Neutral		120	180	212	140	140		R to				
									212				
Sodium Silicate			180	140	140	140	140		140				
2Na ₂ OoSiO ₂	10%							R to					
								140					
	50%							R to					
								212					
Sodium Sulfate	Sat'd	160	180	212	140	140	140	R to					
Na ₂ SO ₄								212					
	0.1%							R to					
								140					
Sodium Sulfide	Sat'd	160	180	212	140	140	140		140	C to			
Na ₂ S										104			
Sodium Sulfite	Sat'd	160	180	212	140	140	140	R to	140				
Na ₂ SO ₃								212					
Sodium Thiosulphate			180	180	140	140	140		140				
$Na_2S_2O_3o5H_2O$	50%							R to					
								248					
Sour Crude Oil				140	140								

		Pl	astics at I	Maximu	m Operat	ing Tem	perature (<u>(F)</u>			
Chemicals and											
	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК
Soybean Oil				73		140			140		
Stannic Chloride	Sat'd		180	140	140	140	140		140		
SnCl ₄											
Stannous Chloride	15%	120	180	140	140	140	140		140		
SNCI ₂	Sat'd					140			140		
Starch			180	140	140	140			140		
Starch Solution	Sat'd					140			140		
Stearic Acid			180	73	140	120	150		120	C to	
CH ₃ (CH ₂) ₁₆ COOH										194	
	100%					R to			R to		
						120			120		
Cteddard's Calvert			NI		NI	70	140		70		
Stoddard's Solvent			Ν		N	73	140		73		
Styrene				73		C to			C to	R to	
(C ₆ H₅CHCH₂)n						73			73	104	
(-0.0											
Succinic Acid			180	140	140	140			140		
CO ₂ H(CH ₂) ₂ CO ₂ H											
Sugar	Aq.		180		140	140			140		
$C_6H_{12}O_6$											
Sulfamic Acid	20%		Ν	180	Ν						
HSO ₃ NH ₂											
Sulfata Liquara	6%		180	140	140						
Sulfate Liquors (Oil)	0%		100	140	140						
Sulfite Liquors	6%	73	180		140	140					
•											
Sulfur			180	212	140	140	140			104	

	Plastics at Maximum Operating Temperature (F)													
Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	РК			
S														
Sulfur Chloride S ₂ Cl	-			C to 73										
Sulfur Dioxide SO ₂	Gas Dry	Ν	73	140	140	140			140					
Sulfur Dioxide	Gas Wet	Ν	Ν	140	73	120	73	Ν	120					
Sulfur Trioxide SO ₃	Gas Dry				140	Ν		Ν	Ν	C to 68				
Sulfur Trioxide SO_3	Gas		Ν		73	Ν		Ν						
Sulfuric Acid H ₂ SO ₄	5%										R to 73			
	30%	120	180	180	140	140	140	R to 248	R to 140		Ν			
	50%	73	180	140	140	120	C to 73	R to 212	R to 140					
	60%	C to 73	180	73	140	120	C to 73	R to 248						
	70%	C to 73	180	73	140	R to 120	C to 73							
	80%	C to 73	180	73	140	R to 120	Ν	C to 248						
	90%	C to 73	150	73	73	120	Ν	R to 212						
	93%	N	140	C to 73	73	C to 73	N							
	94% - 98%	N	130	C to 73	N	C to 73	N	C to 212	N					
	100%	Ν	Ν	C to	Ν	C to	Ν			C to				

Chemicals		11	istics ut 1	<u>viuxiiiuii</u>	roperuti	<u>ng remp</u>	<u>eratare (</u>	<u>. /</u>			
and	Concentration	ABS	CPVC	РР	PVC	PE	PB	PVDF	PEX	PA 11	РК
				73		73				194	
Sulfurous Acid H ₂ SO ₃			180	140	140	140	140	R to 212	140		
Tall Oil			C to 180	180	140	120			120		
Tannic Acid C ₇₆ H ₅₂ O46	10%	N	180	73	140	140	140	R to 212	140		
	Sat'd							R to 212			
Tanning Liquors		160	180	73	140	120	140		120		
Tar			Ν		Ν						
Tartaric Acid HOOC(CHOH) ₂ COO	 DH	160	180	140	140	140	140	R to	140 248		
	Sat'd							R to 248	R to 176	R to 194	
Terpineol C ₁₀ H ₁₇ OH					C to 140						
Tetrachloroethane CHCl ₂ CHCl ₂				C to 73	C to 140	C to 120			C to 120		
Tetrachloroethylene Cl ₂ C:CCl ₂		Ν	Ν	C to 73							
Tetraethyl Lead $Pb(C_2H_5)_4$			73	73	73					68	
Tetrahydrofuran C₄H₀O		N	N	C to 73	N	C to 73	C to 73	C to 68	N		

		Pl	astics at]	Maximui	m Operat	<u>ing Tem</u> ı	perature	<u>(F)</u>			
Chemicals and Formula	Concentration	ABS	CPVC	РР	PVC	PE	PB	PVDF	PEX	PA 11	РК
Tetralin C ₁₀ H ₁₂			N	N	Ν	Ν			N		
Tetra Sodium Pyrophosphate N94Pzo7010H2O			180		140						
Thionyl Chloride			Ν	Ν	Ν	N	140	Ν	Ν		
Thread Cutting Oils	s		73	73	73						
Tin (II) Chloride								R to 212			
Tin (IV) Chloride								R to 212			
Titanium Tetrachlo TiCl₄	ride			140	C to 73	120			120		
Toluene (Toluol) $Ch_3C_6H_5$		Ν	Ν	C to 73	Ν	C to 120	Ν		C to 120	R to 140	R to 73
Tomato Juice			180	212	140	140			140		
Transformer Oil			180	73	140	C to 120			C to 120		
Transformer Oil DTE/30			180		140	R to 120			R to 120		
Tributyl Citrate				C to 73	73	C to 120			C to 120		
Tributyl Phosphate (C₄H ₉)PO₄			Ν	C to 140	Ν	73			73	R to 194	

	Plastics at Maximum Operating Temperature (F)													
Chemicals														
and Formula C	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК			
Trichloroacetic Acid	50%			140	140	140		R to	140					
Ccl₃COOH								104						
	10%					140			140					
Trichlorobenzene								R to						
								140						
Trichloroethane											R to 122			
Trichloroethylene		N	N	N	N	C to	N	R to	C to	C to	R to176			
CHCI:CCI ₂						120		176	68	68				
Triethanolamine		C to	73	140	73	73	73	C to	73					
(HOCH ₂ CH ₂) ₃ N		73						104						
Triethylamine				N	140	73			73					
$(C_2H_5)_3N$					110	10			10					
Trime the design of a				4.40	70	0.45			0.44					
Trimethylpropane (CH ₂ OH) ₃ C ₃ H ₅				140	73	C to 120			C to 120					
(0112011)303115						120			120					
Trisodium Phosphat	e	73	180	140	140	140	140		140					
NaPO ₄ 012H ₂ O														
Turpentine		N	N	N	140	C to	C to		C to	R to				
						120	73		120	140				
Urea			180	180	140	140	140		140					
CO(NH ₂) ₂	10%							R to						
								212						
	Sat'd							R to		C to				
								176		140				
Urine		160	180	180	140	140	140		140					
Vaseline			Ν	140	Ν	120			120					
(Petroleum Jelly)														

(Petroleum Jelly)

	Plastics at Maximum Operating Temperature (F)													
Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК			
Vegetable Oil			C to 180	140	140	R to 140		R to 248	R to 140					
Vinegar		73	150	140	140	140	140		140	194				
Vinyl Acetate CH ₃ COOCH:CH ₂			Ν	73	Ν	140		C to 68	140					
Water, Acid Mine H ₂ O		160	180	140	140	140	180		140		194			
Water, Deionized H_2O		160	180	140	140	140	180		140	194	176			
Water, Distilled H_2O		160	180	212	140	140	180	R to 248	140	194				
Water, Potable H ₂ O		160	180	212	140	140	180	R to 248	140	194				
Water, Salt H ₂ O		160	180	212	140	140	180		140	194				
Water, Sea H ₂ O		160	180	212	140	140	180	R to 248	140	194	R to 176			
Water, Soft H ₂ O		160	180	212	140	140	180		140	194				
Water, Waste H ₂ O		73	180	212	140	140	180		140	194				
Whiskey			180	140	140	140	140	R to 212	140					

	Plastics at Maximum Operating Temperature (F)													
Chemicals and														
	Concentratio	n	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК		
White Liquor			73	180		140								
Wine			73	180	140	140	140	140	R to 248	140				
Wines and Spirits									R to 212					
Xylene (Xylol) C ₆ H ₄ (CH ₃) ₂			Ν	Ν	N	N	Ν	N	C to 140	Ν	C to 194			
Zinc Acetate Zn(C ₂ H ₃ O ₂) ₂ o2H ₂ O				180										
Zinc Carbonate ZnCO ₃				180	140		140		R to 212	140				
Zinc Chloride ZnCl ₂			120	180	180	140	140			140				
	50%										C to 73			
	Sat'd								R to 212					
Zinc Nitrate			160	180	180	140	140	140		140				
Zn(NO ₃) ₂ o6H ₂ O	Sat'd								R to 212					
Zinc Oxide									R to 212					
Zinc Stearate									R to 122					
Zinc Sulfate			160	180	212	140	140	140		140				
$ZnSO_407H_2O$		Sat'd								R to				

Chemicals and											
Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК